use crate::outline_template_based::outline::OutlinePoints;
use crate::{LandGenerationParameters, LandGenerator};
use integral_geometry::{Point, Polygon, Rect, Size};
use land2d::Land2D;
pub struct MazeTemplate {
pub width: usize,
pub height: usize,
pub cell_size: usize,
pub inverted: bool,
pub distortion_limiting_factor: u32,
pub braidness: usize,
}
pub struct MazeLandGenerator {
maze_template: MazeTemplate,
}
fn prev_odd(num: usize) -> usize {
if num & 1 == 0 {
num - 1
} else {
num
}
}
impl MazeLandGenerator {
pub fn new(maze_template: MazeTemplate) -> Self {
Self { maze_template }
}
fn generate_outline<I: Iterator<Item = u32>>(
&self,
size: &Size,
play_box: Rect,
intersections_box: Rect,
random_numbers: &mut I,
) -> OutlinePoints {
let num_cells = Size::new(
prev_odd(size.width / self.maze_template.cell_size),
prev_odd(size.height / self.maze_template.cell_size),
);
let num_edges = Size::new(num_cells.width - 1, num_cells.height - 1);
let seen_cells = Size::new(num_cells.width / 2, num_cells.height / 2);
let num_steps = if self.maze_template.inverted { 3 } else { 1 };
let mut step_done = vec![false; num_steps];
let mut last_cell = vec![Point::diag(0); num_steps];
let mut came_from_pos = vec![0; num_steps];
let mut came_from = vec![vec![Point::diag(0); num_steps]; num_cells.area()];
let mut done = false;
let mut seen_list = vec![vec![None as Option<usize>; seen_cells.width]; seen_cells.height];
let mut x_walls = vec![vec![true; seen_cells.width]; seen_cells.height - 1];
let mut y_walls = vec![vec![true; seen_cells.width - 1]; seen_cells.height];
let mut x_edge_list = vec![vec![false; num_edges.width]; num_cells.height];
let mut y_edge_list = vec![vec![false; num_cells.width]; num_edges.height];
let mut maze = vec![vec![false; num_cells.width]; num_cells.height];
let off_y = 0;
for current_step in 0..num_steps {
let x = random_numbers.next().unwrap_or_default() as usize % (seen_cells.width - 1)
/ num_steps;
last_cell[current_step] = Point::new(
(x + current_step * seen_cells.width / num_steps) as i32,
random_numbers.next().unwrap_or_default() as i32 % seen_cells.height as i32,
);
}
let see_cell = |current_step: usize, start_dir: Point, seen_list: &mut Vec<Vec<Option<usize>>>, x_walls: &mut Vec<Vec<bool>>, y_walls: &mut Vec<Vec<bool>>,
last_cell: &mut Vec<Point>, came_from: &mut Vec<Vec<Point>>, came_from_pos: &mut Vec<i32>| {
let mut dir = start_dir;
loop {
let p = dbg!(last_cell[current_step]);
seen_list[p.y as usize][p.x as usize] = Some(dbg!(current_step));
let next_dir_clockwise = true;//random_numbers.next().unwrap_or_default() % 2 == 0;
for _ in 0..5 {
let sp = dbg!(p) + dbg!(dir);
let when_seen =
if sp.x < 0
|| sp.x >= seen_cells.width as i32
|| sp.y < 0
|| sp.y >= seen_cells.height as i32
{
None
} else {
Some(seen_list[sp.y as usize][sp.x as usize])
}
;
match when_seen {
None => {
// try another direction
if dir.x == -1 && p.x > 0 {
y_walls[p.y as usize][p.x as usize - 1] = false;
}
if dir.x == 1 && p.x < seen_cells.width as i32 - 1 {
y_walls[p.y as usize][p.x as usize] = false;
}
if dir.y == -1 && p.y > 0 {
x_walls[p.y as usize][p.x as usize] = false;
}
if dir.y == 1 && p.y < seen_cells.height as i32 - 1 {
x_walls[p.y as usize][p.x as usize] = false;
}
if next_dir_clockwise {
dir = dir.rotate90();
} else {
dir = dir.rotate270();
}
}
Some(None) => {
// cell was not seen yet, go there
if dir.y == -1 {
x_walls[p.y as usize - 1][p.x as usize] = false;
}
if dir.y == 1 {
x_walls[p.y as usize][p.x as usize] = false;
}
if dir.x == -1 {
y_walls[p.y as usize][p.x as usize - 1] = false;
}
if dir.x == 1 {
y_walls[p.y as usize][p.x as usize] = false;
}
last_cell[current_step] = dbg!(sp);
came_from_pos[current_step] += 1;
came_from[came_from_pos[current_step] as usize][current_step] = p;
return true;
}
_ => {
return true;
}
}
}
last_cell[current_step] = came_from[came_from_pos[current_step] as usize][current_step];
came_from_pos[current_step] -= 1;
return came_from_pos[current_step] < 0;
}
};
let mut islands: Vec<Polygon> = vec![];
let mut polygon: Vec<Point> = vec![];
let add_vertex = |p: Point, polygon: &mut Vec<Point>| {
let cell_size = self.maze_template.cell_size as i32;
let [x, y] = [p.x, p.y].map(|i| {
if self.maze_template.inverted || i & 1 == 0 {
cell_size
} else {
cell_size * 2 / 3
}
});
let new_point =
Point::new((p.x - 1) * cell_size + x, (p.y - 1) * cell_size + y + off_y);
let nv = polygon.len();
if nv > 2 {
if polygon[nv - 2].x == polygon[nv - 1].x && polygon[nv - 1].x == new_point.x
|| polygon[nv - 2].y == polygon[nv - 1].y && polygon[nv - 1].y == new_point.y
{
polygon.pop();
}
}
polygon.push(new_point);
};
let add_edge = |p: Point, dir: Point, polygon: &mut Vec<Point>, x_edge_list: &mut Vec<Vec<bool>>, y_edge_list: &mut Vec<Vec<bool>>| {
let mut dir = dir.rotate270();
let mut next_p = Some(p);
while let Some(p) = next_p {
next_p = None;
for _ in 0..4 {
dir = dir.rotate90();
let cdir = Point::new(
if dir.x < 0 { 0 } else { dir.x },
if dir.y < 0 { 0 } else { dir.y },
);
let np = p + cdir;
let edge_list = if dir.x == 0 {
&mut *x_edge_list
} else {
&mut *y_edge_list
};
if np.x >= 0
&& np.y > 0
&& np.x < num_cells.width as i32
&& np.y < num_cells.height as i32
&& edge_list[np.y as usize][np.x as usize]
{
(*edge_list)[np.y as usize][np.x as usize] = false;
add_vertex(p + dir + Point::new(1, 1), polygon);
next_p = Some(p + dir);
break;
}
}
}
};
while !done {
done = true;
for current_step in 0..num_steps {
if !step_done[current_step] {
let dir = match random_numbers.next().unwrap_or_default() % 4 {
0 => Point::new(0, -1),
1 => Point::new(1, 0),
2 => Point::new(0, 1),
3 => Point::new(-1, 0),
_ => panic!(),
};
step_done[current_step] =
see_cell(current_step, dir, &mut seen_list, &mut x_walls, &mut y_walls, &mut last_cell, &mut came_from, &mut came_from_pos);
done = false;
}
}
}
for x in 0..seen_cells.width {
for y in 0..seen_cells.height {
if seen_list[y][x].is_some() {
maze[y * 2 + 1][x * 2 + 1] = true;
}
}
for y in 0..seen_cells.height - 1 {
if !x_walls[y][x] {
maze[y * 2 + 2][x * 2 + 1] = true;
}
}
}
for x in 0..seen_cells.width - 1 {
for y in 0..seen_cells.height {
if !y_walls[y][x] {
maze[y * 2 + 1][x * 2 + 2] = true;
}
}
}
for x in 0..num_edges.width {
for y in 0..num_cells.height {
x_edge_list[y][x] = maze[y][x] != maze[y][x + 1];
}
}
for x in 0..num_cells.width {
for y in 0..num_edges.height {
y_edge_list[y][x] = maze[y][x] != maze[y + 1][x];
}
}
for x in 0..num_edges.width {
for y in 0..num_cells.height {
if x_edge_list[y][x] {
x_edge_list[y][x] = false;
add_vertex(Point::new(x as i32 + 1, y as i32 + 1), &mut polygon);
add_vertex(Point::new(x as i32 + 1, y as i32), &mut polygon);
add_edge(Point::new(x as i32, y as i32 - 1), Point::new(0, -1), &mut polygon, &mut x_edge_list, &mut y_edge_list);
islands.push(Polygon::new(&polygon));
polygon.clear();
}
}
}
OutlinePoints {
islands,
fill_points: vec![Point::new(1, 1 + off_y)],
size: *size,
play_box,
intersections_box,
}
}
}
impl LandGenerator for MazeLandGenerator {
fn generate_land<T: Copy + PartialEq + Default, I: Iterator<Item = u32>>(
&self,
parameters: &LandGenerationParameters<T>,
random_numbers: &mut I,
) -> Land2D<T> {
let do_invert = false;
let (basic, zero) = if do_invert {
(parameters.zero, parameters.basic)
} else {
(parameters.basic, parameters.zero)
};
let land_size = Size::new(self.maze_template.width, self.maze_template.height);
let mut land = Land2D::new(&land_size, basic);
let mut points = self.generate_outline(
&land.size().size(),
Rect::at_origin(land_size).with_margin(land_size.to_square().width as i32 * -2),
land.play_box(),
random_numbers,
);
if !parameters.skip_distort {
points.distort(parameters.distance_divisor, random_numbers);
}
if !parameters.skip_bezier {
points.bezierize(5);
}
points.draw(&mut land, zero);
for p in &points.fill_points {
land.fill(*p, zero, zero)
}
points.draw(&mut land, basic);
land
}
}